作者单位
摘要
中国科学院上海光学精密机械研究所,上海 201800
掺镱大模场光子晶体光纤在高峰值功率超快激光放大器中有着重要的应用价值,其研究得到了广泛关注。首先简要介绍了国内外掺镱大模场光子晶体光纤的研究进展,阐述了掺镱大模场光子晶体光纤的基本设计思路,对比说明了保偏型掺镱光子晶体光纤的设计制备方法。重点介绍了近十年来中国科学院上海光学精密机械研究所在掺镱大模场光子晶体光纤方面的研究进展。包括掺镱大模场光子晶体光纤的纤芯折射率大小和均匀性控制、光子晶体光纤微结构控制等关键技术。采用自主研制的四种芯径为40~100 μm的掺镱大模场光子晶体光纤开展了皮秒脉冲激光放大实验。利用40 μm芯径的保偏掺镱光子晶体光纤实现了平均功率为100 W、光束质量因子(M2)小于1.4的稳定输出,偏振消光比为12 dB。利用100 μm芯径的保偏掺镱大模场光子晶体光纤实现了M2小于1.5的高光束质量脉冲放大。上述研究为掺镱大模场光子晶体光纤的国产化应用奠定了基础。
光纤光学 掺镱石英玻璃 大模场光子晶体光纤 皮秒脉冲激光放大 光纤激光 
中国激光
2024, 51(1): 0106001
Yafei Wang 1†Yinggang Chen 1,2Shikai Wang 1,*Meng Wang 1[ ... ]Lili Hu 1,3,*
Author Affiliations
Abstract
1 Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, Key Laboratory of Materials for High Power Laser, Shanghai, China
2 University of Chinese Academy of Sciences, Beijing, China
3 University of Chinese Academy of Sciences, Hangzhou Institute for Advanced Study, Hangzhou, China
4 South China University of Technology, School of Materials Science and Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangzhou, China
Ultrashort pulses at 920 nm are a highly desired light source in two-photon microscopy for the efficient excitation of green fluorescence protein. Although Nd3 + -doped fibers have been utilized for 920-nm ultrashort pulse generation, the competitive amplified spontaneous emission (ASE) at 1.06 μm remains a significant challenge in improving their performance. Here, we demonstrate a coordination engineering strategy to tailor the properties of Nd3 + -doped silica glass and fiber. By elevating the covalency between Nd3 + and bonded anions via sulfur incorporation, the fiber gain performance at 920 nm is enhanced, and 1.06-μm ASE intensity is suppressed simultaneously. As a result, the continuous-wave laser efficiencies and signal-to-noise ratio at 920 nm by this fiber are significantly enhanced. Importantly, the stable picosecond pulses at 920 nm are produced by a passive mode-locking technique with a fundamental repetition rate up to 207 MHz, which, to the best of our knowledge, is the highest reported repetition rate realized by Nd3 + -doped silica fibers. The presented strategy enriches the capacity of Nd3 + -doped silica fiber in generating 920-nm ultrashort pulses for application in biophotonics, and it also provides a promising way to tune the properties of rare-earth ion-doped silica glasses and fibers toward ultrafast lasers.
rare-earth-doped fiber ultrashort pulse high repetition rate fiber laser 
Advanced Photonics Nexus
2023, 2(6): 066002
作者单位
摘要
1 中国科学院上海光学精密机械研究所高功率激光单元技术实验室,上海 201800
2 中国科学院大学,北京 100049
3 国科大杭州高等研究院,浙江 杭州 310024
4 俄罗斯科学院光纤研究中心,莫斯科 119333,俄罗斯
中国激光
2023, 50(15): 1516001
孙焰 1,2冯素雅 1,*王欣 1,2,**王璠 1[ ... ]胡丽丽 1,2,3
作者单位
摘要
1 中国科学院上海光学精密机械研究所高功率激光单元技术实验室,上海 201800
2 中国科学院上海光学精密机械研究所强场激光物理国家重点实验室,上海 201800
3 中国科学院大学杭州高等研究院,浙江 杭州 310024
中国激光
2023, 50(10): 1016001
作者单位
摘要
1 中国科学院上海光学精密机械研究所高功率激光单元技术实验室, 上海 201800
2 中国科学院大学, 北京 100049
3 中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
4 上海大恒光学精密机械有限公司, 上海 201800
通过实验和理论相结合的方式,从热透镜效应角度研究了Er 3+,Yb 3+∶glass在激光二极管(LD)端面抽运条件下的激光输出能量,建立起LD抽运重复频率、Er 3+,Yb 3+∶glass热光系数与空腔运转斜率效率、调Q输出脉冲能量之间的关系。采用平凹腔结构,并以Co 2+∶MgAl2O4作为调Q开关,设计了LD端面抽运被动调Q激光器,实验结果发现,当热焦距大于前腔面光斑半径最小值对应的热焦距时,空腔运转斜率效率与材料的热光系数呈负相关,调Q输出脉冲能量与热光系数及抽运重复频率均呈负相关。基于理论研究,通过热焦距公式、稳定谐振腔的矩阵计算法以及被动调Q的速率方程进行数值模拟,解释并验证上述实验现象。结果显示,可通过降低抽运重复频率和选择低热光系数的Er 3+,Yb 3+∶glass等方式降低热透镜效应实现高脉冲能量的输出。
激光器 热透镜效应 输出能量 Er 3+ Yb 3+∶glass; 抽运重复频率 热光系数 
中国激光
2021, 48(17): 1701002
作者单位
摘要
1 中国科学院上海光学精密机械研究所,上海 201800
2 中国科学院上海光学精密机械研究所,上海 201800;中国科学院大学 杭州高等研究院,浙江 杭州 310024
基于自制的掺镱大模场光子晶体光纤,探索出一种高效快速的光子晶体光纤端面处理工艺。使用二氧化碳激光熔接机对光子晶体光纤进行旋转加热处理,并配合大口径光纤切割刀对塌缩区域进行切割。通过对比光纤在不同激光加热功率和加热时间下的塌缩效果,确定了最佳的加热功率和时间。对端面处理后的光纤进行激光震荡实验,测试光纤的激光性能,与未进行端面处理时的激光实验结果相比较,端面塌缩处理没有对光纤的激光性能产生较大的影响。通过所述的实验方法,成功得到高质量光子晶体光纤塌缩端面,空气孔塌缩界面齐整,且没有对光纤本身的激光性能产生较大的影响。实验工艺周期短、成功率高,证明利用激光加热塌缩来处理光子晶体光纤端面是一种非常有效的方法,极大地拓展了光子晶体光纤的使用范围,具有很强的实用价值。
光子晶体光纤 大模场光纤 二氧化碳激光 光纤塌缩 photonic crystal fiber large mode area fiber carbon dioxide laser fiber collapse 
红外与激光工程
2020, 49(12): 20201065
作者单位
摘要
1 中国科学院上海光学精密机械研究所强激光材料重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
近年来,掺镱大模场光子晶体光纤由于在高峰值功率皮秒超快激光放大器方面的重要应用而受到广泛关注。简要分析了掺镱大模场光子晶体光纤的研制难点,介绍了国内外掺镱大模场光子晶体光纤的研究进展,以及应用于掺镱大模场光子晶体光纤制备的掺镱石英玻璃芯棒制备方法及其光学、光谱性能,重点介绍了中国科学院上海光学精密机械研究所基于溶胶-凝胶工艺制备大直径、低数值孔径掺镱石英玻璃芯棒玻璃,以及大模场掺镱光子晶体光纤的制备及其用于皮秒脉冲激光放大的研究进展。最后对掺镱大模场光子晶体光纤的研发及应用进行了总结及展望。
光纤光学 掺镱石英玻璃 大模场面积光子晶体光纤 皮秒脉冲激光放大 
激光与光电子学进展
2019, 56(17): 170602
Meng Wang 1,2Fan Wang 1,2Suya Feng 1,*Chunlei Yu 1,**[ ... ]Lili Hu 1,***
Author Affiliations
Abstract
1 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
A large-mode-area (LMA) ytterbium-doped photonic crystal fiber (PCF) with core NA of 0.034 and core diameter of 50 μm was made by the stack-and-draw technique. The core is formed by Yb3+/Al3+/F /P5+ co-doped silica glass containing 0.09 mol% Yb2O3 with an absorption coefficient at 976 nm up to 3.2 dB/m. The core glass with homogeneous distribution of Yb3+ ions and refractive index difference of 4 × 10 4 compared with pure silica was prepared by the sol-gel method and heat homogenization at 2000°C. Laser power amplification of this LMA PCF was studied using a seed source of 21 ps pulse duration and 48.7 MHz repetition rate at 1030 nm wavelength. With pump power of 520 W, a maximum 272 W (266 kW peak power) quasi-single-mode laser output with M2 of 2.2 was achieved in a 4.7 m fiber length bent at a diameter of 47 cm with slope efficiency of 52%, and no obvious mode instability, stimulated Raman scattering, or thermal damage on the end facet of the fiber were observed.
140.3538 Lasers, pulsed 140.3615 Lasers, ytterbium 140.3510 Lasers, fiber 160.5690 Rare-earth-doped materials 
Chinese Optics Letters
2019, 17(7): 071401
Author Affiliations
Abstract
1 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 e-mail: fsy@siom.ac.cn
Induced loss at 633 nm is tested in Yb3+/Al3+ co-doped silica fiber by a core pumped with a 974 nm laser and probed with a 633 nm laser. The fiber is prepared by the modified chemical vapor deposition method combined with solution doping. Different power scales of pump light and probe light are used in the tests. It is found that there is a dynamic equilibrium between photobleaching induced by 633 nm probe light and photodarkening (PD) induced by 974 nm pump light. For the first time to our knowledge, the effect of 633 nm probe laser power on an induced loss test of Yb3+/Al3+ co-doped silica fiber is studied quantitatively. It suggests that as long as the 633 nm probe light power is less than 0.2 mW, the induced loss is mainly contributed by the PD effect of pumping light, and the deviation of induced loss is less than 5%.
060.2270 Fiber characterization 060.2290 Fiber materials 060.2300 Fiber measurements 
Chinese Optics Letters
2018, 16(1): 010603
Ziwei Wang 1,2Qiurui Li 1Zhaokun Wang 1,2峰 邹 1,2[ ... ]Jun Zhou 1,*
Author Affiliations
Abstract
1 Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100039, China
3 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
We report on the amplification of high-average-power and high-efficiency picosecond pulses in a self-made very-large-mode-area Yb-doped photonic crystal fiber (PCF). The PCF with a core diameter of 105 μm and a core numerical aperture of 0.05 is prepared by the sol-gel method combined with the powder sintering technique. The fiber amplification system produces the highest average power of 255 W at a 10 MHz repetition rate with a 21 ps pulse duration corresponding to a peak power of 1.2 MW. This result exemplifies the high-average-power and high-peak-power potential of this specifically designed fiber.
140.3538 Lasers, pulsed 140.3615 Lasers, ytterbium 140.3280 Laser amplifiers 140.3510 Lasers, fiber 
Chinese Optics Letters
2016, 14(8): 081401

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!